

PROTECTION SYSTEM COMMISSIONING WEBINAR

MRO PROTECTIVE RELAY SUBGROUP July 14, 2022 10:00 a.m. – 11:30 a.m. Central

Max Desruisseaux

Senior Power Systems Engineer Reliability Analysis Midwest Reliability Organization

WebEx Chat Feature

Open the Chat Feature:

The chat feature will appear to the right of the WebEx window.

Attendees should chat their questions to: "MRO Host".

Select MRO Host by using the drop down arrow in the "To" field.

Purpose

- Misoperations Due to Errors Occurring During Commissioning is a Medium Risk in the MRO reliability risk matrix.
- Provide information on and raise awareness of the Joint Review of Protection System Commissioning Programs report.
- Highlight some of the work being done by entities and the PRS.
- Discuss Performance Data

Discussion Topics

- Overview of Protection System Commissioning Report
- Best Practices
- Case Studies
- PRS Misoperations Phase II Report
- Event Analysis Data
- MIDAS Data

Gilbert Lowe III, P.E.

Electrical Engineer Office of Electric Reliability Federal Energy Regulatory Commission

Protection System Commissioning Program Review Project

Efforts to Reduce Misops From Inadequate PSC

- 2015-2021 NERC Issued Lessons Learned
- 2017 IEEE WG I-25 guide Commissioning Testing of Protection Systems
- 2019 Analysis of MIDAS finding 18-36% of Misops could have been prevented better PSC

PSC Review Project Process

- Eight registered entities and one PSC contractor.
- Selected based on geographical locations and performance data such as events and Misop rates.
- Surveys and Interviews on participants' PSC programs and Procedures.
- Used the IEEE WG I-25 guide as a benchmark.
- Team discussed and agreed upon the best practices, opportunities for improvement, and related recommendations.

PSC Programs Key Elements

- Stated goals and objectives
- Well-defined plans to perform commissioning
- Clearly identified lines of responsibility
- Authority given to responsible parties
- Feedback methods for improvements

PSC Program Recommendations

- All entities should document a formal PSC program. Having a formal, documented program in a central location (e.g., a single document) allows easy reference to all 5 elements of the PSC program.
- Have well-documented training requirements of classroom and onthe-job training coupled with some type of proficiency assessment to ensure well-qualified commission testing personnel.
- Entities should use internal controls to find, track and correct issues in their PSC programs. Entities should implement controls to ensure that lessons learned are documented and fed back into future project design and commissioning processes.
- Entities should separate the commissioning agent from the design and installation processes.

PSC Program Best Practices

- Designated senior management from different departments to share responsibility for program approval. Senior management involvement is likely to draw attention to and support commission testing programs.
- Multi-layer contractor selection process that vetted the contractor's firm then its employees assigned to project followed by frequent meetings with the contractor to review work performance
- Intranet access to lessons learned in standardized form that is reviewed during scoping of new projects and shared with industry groups

PSC Procedure Core Elements

- Planning and sequencing
- Print and technical review
- Preparing installed equipment for modification
- Equipment and device acceptance testing
- Equipment isolation
- Functional testing
- Operational (or in-service load) checks
- Documentation

PSC Procedure Recommendation

- Ensure PSC team (including contractors) performs independent design review prior to the start of construction
- Maintain a documented isolation log in a standardized format that includes the repositioning of test switches, temporary jumpers, and shorting blocks; who made the changes; time and date of the change; and when the equipment was returned to normal.
- CT circuit errors represent a significant portion of misops primarily due to incorrect CT ratios, polarity, and left in shorted position.
- All Entities should perform current testing on all phases to ground, phase-to-phase, and 3-phase faults. This will ensure that CT ratios, CT and polarity, and polarization of ground elements is correct for all fault scenarios.

PSC Procedure Best Practices

- PSC procedures included back-to-back testing on tie lines, unfamiliar relay models, configurations, and/or firmware editions.
- Engineering package identified all equipment that needed isolated or shorted ensuring adequate in-service protection
- Peer review process to assess test results and avoid possible bias.
- Maintain an isolation log and tagged the circuits at the point of isolation for equipment isolation.

Sarah Marshall

Team Lead System Protection Alliant Energy

Alliant Energy's Commissioning Best Practices

How to Keep Bugs Out of the Ointment

Sarah Marshall – Team Lead System Protection, Alliant Energy

Pillars for Success

COMMISSIONING CHECKLISTS

HUMAN PERFORMANCE TOOLS

System Protection Standards Committee

U	
	٦

All template changes reviewed quarterly for approval.

Review team: engineers, operations, management.

Limits the frequency of major design changes to 1-2 times per year.

Hardware changes New protection schemes Operational changes impacting the design

Minor changes are permitted as needed at any time.

Firmware version changes Correcting design errors

Substation Drawing Template

Relay Settings Template

Relay Setpoints File

										Plane and the met for a tria to a second			
> -	Global	Froquon	w Flo	monte				voltage must be present:	that the following con-	litions must be met for a trip to occur.			
Y-	Group 1	riequein	Cy LIC	mento				 close failure condition must not exist (CF=0). 					
	✓ - ⁽ⁱ⁾ Set 1												
11111	- General Settings	Frequency Eler	ment Setti	ngs		Underfrequency Logic Equations							
	— O Line Settings and Fault Locator	E81 Frequency	Elements			Application of underfrequency settings should be determined by the Delivery System Plan							
1	— O Phase Overcurrent Elements		Select	N 1.6		Inderfrequency Settinge:							
1	— O Neutral Ground Overcurrent Elements	1 7	- Jelect	N, 10					00.11-				
-	— @ Residual Ground Overcurrent Elements	27891D Linder	altana Black	(V coc)				F81 = 1	50 HZ nominal frequences	frequency settings			
1	— O Negative-Sequence Overcurrent Elements	27001P Ondervi		(v,sec)		81D1P = (see note below)	Setting should be p	rovided by the Delivery System Planner					
1	— Overcurrent Elements	84.00 ###	Kange	= 25.00 to 500.00				81D1D = 6 Cycles	Underfrequency tim	e delays are 6 cycles for all underfreque			
-	— Overcurrent Element	Level 1						27B81P = 84	Undervoltage block	in secondary volts (frequency elements			
	🕘 Residual Ground Time-Overcurrent Elements	Lever					120:1 ratio VT's:	an secondary L-O voltage. Tor example					
1	— O Negative-Sequence Time-Overcurrent Element	81D1P Pickup	(Hz)										
1	- 🕘 Breaker Failure	50.00 ###	Rang	e = 40.10 to 65.00	OFF					$\left[\frac{24.9KV}{2}\right] \times 70\% = 84V$ (11)			
1	— O Second Harmonic Blocking									$\lfloor \sqrt{3 \times 120} : 1 \rfloor$			
1	— O Load Encroachment Element	81D1D Time D	elay (cyc)					Note: Under-frequency-load-sheading (LIELS) will be set by Delivery System Planning					
i.	— O Directional Elements	6.00	🔵 Rang	e = 2.00 to 16000.	00	particular substation. If UFLS will be recommended to implement in the next y							
1	— O Voltage Elements							department we recomm	ended setting 81D1P	= 50. A setting of 50Hz is way below a			
611111	— O Synchronism Check Elements	Level 2						by MISO, but would pr	rovide us the ability	to test and verify UFLS relay logic an			
	— Frequency Elements	Leverz						commissioning without a	anecund system reliab	intervention and anow for an easy second adds			
111111	— @ Rate-of-Change-of-Frequency Elements	Errors: Found 4:	1 Setting(s)										
10110	- 🕘 Redosing Relay									R			
1	- O Switch-Onto-Fault Logic	Group	Setting	Value	Message								
	- O Communications Assisted Trip Schemes	Group 1	27881P	84.00 ###	Error: Group 1	27881P	Setting value "84.00 ###" must be greater than or e	qual to 25.00 and less than or equ	ual to 300.00.				
1	— O Demand Elements	Group 1	50G2P	4.000 ###	Error: Group 1	50G2P	Setting Value "4.000 ###" is not a valid value for this	setting.					
	- Other Settings	Group 1	50P 1P	34.60 ###	Error: Group 1	50P 1P	Setting Value "34.60 ###" is not a valid value for this	setting.					
11110	- SELogic Variable Timers	Group 1	50P2P	5.00 ###	Error: Group 1	50P2P	Setting Value "5.00 ###" is not a valid value for this	settina.					

Relay Settings Documentation Gu			ideline – 351-BB	Version: XX Issued:	6.00 02/04/2022
Note: 51Q asse element pickup	erts if negative-see setting 51QP. No	quence current 312 = te that this formula	= $I_A + a^2 I_B + a I_C$ for a = 1∠120°, is valid only for ABC countercloc	is greater than negativ kwise rotating three-pl	e-sequence time-overcurrent hase system.
Directional I	Element				
E32 = N ELOP = N	Directional eler Note that the lo	ments are not used oss-of-potential logi	c still operates with ELOP = N		
Voltage Eler	ment				
Vnom = 120	VT nominal vo VT's]). See be	ltage setting in see	condary volts (line-to-neutral [wy Iculation, at 24.9kV L-L using L-C	e-connected VT's] or wye connected 120:	line-to line [delta-connected ratio VT's.
		$\left[\frac{24.}{\sqrt{3}\times}\right]$	$\left[\frac{9KV}{120:1}\right] = 120V$ (10)		
Underfreque	ency Element				
Underfrequencyvoltage muclose failure	y logic ensures that ist be present; e condition must i	at the following con not exist (CF=0).	ditions must be met for a trip to o	ecur:	
Underfrequence	cy Logic Equatio	ns			
Application of u	inderfrequency se	ttings should be de	termined by the Delivery System	Planners.	
Underfrequence	cy Settings:				
NFREQ = 60 E81 = 1 81D1P = (see r 81D1D = 6 Cyc 27B81P = 84	note below) lles	60 Hz nominal freq Enable one level of Setting should be p Underfrequency tin Undervoltage block Set to 70% of nomi 120:1 ratio VT's:	uency frequency settings. rovided by the Delivery System I e delays are 6 cycles for all under i, in secondary volts (frequency e nal secondary L-G voltage. For	Planner for that area. erfrequency steps. lements are disabled l example, at 24.9kV L-I	below this voltage threshold). Lusing L-G wye connected
			$\left[\frac{24.9KV}{\sqrt{3}\times120:1}\right]\times70\%=84V$	(11)	
Note: Under-fre particular departme by MISC commiss	equency-load-she r substation. If U ent we recommer D, but would prov sioning without aff	ading (UFLS) will be IFLS will be recom ided setting 81D1P vide us the ability ecting system reliat	e set by Delivery System Plannin imended to implement in the n = 50. A setting of 50Hz is way to test and verify UFLS relay i bility and allow for an easy setooi	g department accordin ext year or two by th below any UFLS settii ogic and SCADA pro nt adiustment and re-	g to MISO, if needed for your e Delivery System Planning ng that would be recommend gramming during substation ommissioning at a later date.
				Relav	Settinas
al to 25.00 and k	ess than or equa	l to 300.00.			
tting.					Guide

Distribution Feeder

System Protection

SP-GUID-210

Section:

Commissioning Template

Trip at Substation

Alliant Energy.

Commissioning Checklist

Substation Commissioning Re	eview Checklist V3
Conduct Review 1 to 4 weeks after (Checkout is Complete
oject:	
oject Checkout Date:	
view Completion Date:	
view Completed With (Personnel):	
	Comment
Is Corporate Project Folder Set Up Correctly (Use Template)	
Commissioning Checklist	
Completed and saved to corporate project folder	
Protective Relays	
As-Left settings - System Protection Engineering notified to remotely access relays and save settings to corporate database	
Protection Suite commissioning file saved to corporate project folder	
Protection Suite maintenance test plan complete	
For UFLS implemented relays confirm UF pickup and time delay were tested and Cascade has correct values entered	
Instrument Transformers	
Test results saved to corporate project folder?	

Commissioning Task List

Α.	8	C	D	Ε	F	G		1	J	K	L	M	N	0	P
Group	Task	Task	Task	Task	Task	Task	Task	Task	Task	Task	Task	Task	Task	Task	Task
System Tech			As checkout date gets closer touch base with DSDV/SCADA team to confirm checkout time!date		Ensure all pre-checkout Commissioning Dhecklist tasks are completed and periorm Tocal checkout with DSI verification	Perform Direckout	Energize Transformer and verify LTC operation(typically completed following checkout)	Notes USUF SCHUR Team, assigned Substation Protection Engineer and Sub Tech Support ManagetForeman that transformer has been energized		Yenify differential relaying values, relay metering and metering values in OSI are correct when sufficient load is added	Contact System Photection Engineer to have them remotely access and save the Timal relay settings to Allian's corporate drive	Complete field markups of as-built electrical/communicatio ns drawings, sign first page and submit to Substation Engineer	Complete Project Commissioning Checklist	Perform Project Review Complets Substation Commissioning Review Checklist	Receive final As-Built dravings from draking, review for accuracy against field marked up copg and replace field marked up copg in substation
Telecom Tech					Ensure all pre-checkout Commissioning Checklist tasks are completed and perform Tocal checkout with OSI verification	Perform Checkout						Complete field markups of as-built electrical/communicatio ns drawings, sign first page and submit to Substation Enrineer	Complete Project Commissioning Disekfort	Perform Project Review Complete Substation Commissioning Review Charchitet	For communications only projects - Receive final As-Built drawings from drafting, review for accuracy against field marked up copy and replace field marked up come in substation
System Protection Engineering		Provide relag and SCADA programming information to technicians 2 weeks prio to System Technician	Minimum 2 weeks prior to scheduled checkout date submit SCADA r information to DSOV SCADA Team, Build		1111-10-00	Percencercou	Verify voltages and check relays and remote access to relays			Review site in DSI to ensure one line, metering, alarming, etc. are accurate	Save final relay/SCADA files to corporate drive(relay settings files, LTC Controller, 2414s, RTU, etc)	Sastatoricigaes	Ciertor	Carolada	
DSOV SCADA Team(Bev & Martin)				Refer to Sub Tech Support work schedule for site checkout dates		Perform Checkout		Move site in DSI from Under Construction to Actively Monitor. Change site font color to white unless site has special consideration(2nd phase to complete, etc.). Ensure all alarm inhibits							
Sub Tech Support Foreman or Manager	Set date in work								Send email to DSDV manager and supervisor, Substation Maintenance manager, DSDV SCADA team, System Photestoin Engineer notifying them that site is in service and DSDV has monitoring/control secono-chillie					Lead Project Review - Complete Substation Commissioning Review Dear-lifet	

Human Performance Tools

Rely on the process.

Find a framework, then use it.

Ryan Einer, PE

Manager Operations Support Oklahoma Gas And Electric Co.

Case Studies: The Impact of Commissioning on Recent Misoperations

Ryan Einer, PE – Manager Operations Support

We Energize Life

Protection System Commissioning

DCB Carrier Misoperation

DCB Carrier Misoperation

Protection System Commissioning Program

- No job is too small to establish well-defined plans to perform commissioning
- Establish a feedback method for improvements

Protection System Commissioning Process

- Functional testing of the protection system with effective component testing.
- Utilize a consistent and complete PSC test checklist that identifies specific tasks in the commissioning procedure

As Designed CT Polarity

As Built CT Polarity

Protection System Commissioning Program

- All construction projects are unique, and a one-size fits all approach to a commissioning plan will have gaps
- Clearly identified lines of responsibility

Protection System Commissioning Process

- In-service tests to verify AC voltage and current circuits to verify proper magnitude and phase relationships
- Entities should perform a final walkdown upon completion of in-service testing using a checklist to document the results
- Utilize a consistent and complete PSC test checklist that identifies specific tasks in the commissioning procedure

John Grimm, PE

Principal Systems Protection Engineer Reliability Analysis Midwest Reliability Organization

MRO Protective Relay Subcommittee Misoperations Phase II Report

By John Grimm, P.E. – Principal Systems Protection Engineer

CLARITY ASSURANCE RESULTS

PRS Whitepapers

Protection System Misoperations

MRD Proteotive Relay Subooi

STAN MEL

April 18, 201)

AND

Protection System Misoperations

https://www.mro.net/wp-content/uploads/documentlibrary/Protection-System-Misoperation-White-Paper.pdf

PRS Phase II Misoperations White Paper

https://www.mro.net/wp-content/uploads/documentlibrary/Protective-Relay-Subcommittee-Misoperations-Phase-II-Whitepaper.docx.pdf

PRS Phase II Misoperations White Paper

MRO Protective Relay Subcommittee

June 26, 2017

Misoperations Phase II Report

- The PRS identified high impact schemes that when they misoperate or fail to operate, they can lead to more severe events.
- The areas of focus for this Phase II report are:
 - Breaker Failure Schemes
 - o Differential Schemes
 - Differential Commissioning Practices
- The PRS reviewed the misoperation submissions for 2010 to first quarter of 2016 and identified submissions related to breaker failure and differential misoperations.

Commissioning Practices to Reduce Misoperations

- As the PRS was analyzing the misoperation submittals within the MRO, it was evident that a significant portion of the errors involved with differential misoperations could have been caught during commissioning.
- Many could have been prevented with detailed commissioning and testing practices by on-site personnel.
- The third chapter of the whitepaper addresses commissioning practices:
 - Commissioning AC circuitry
 - Commissioning DC circuitry
 - Thorough load checks during commissioning
- For effective commissioning, make sure that the construction schedule is not compressed to the point such that insufficient time is given to properly commission the protection schemes.

Commissioning Practices and Checks

- Verify orientation of components installed matches design documents.
- CT ratio field checks to verify the ratio in the relay settings match the CT tap settings and the CT wiring matches the drawings.
- Verify relay winding compensation settings are appropriate for the transformer winding being protected.
- Electrical test should be performed to validate CT saturation curves, CT dielectric strength, and integrity of the secondary circuits.
- Verify the lockout relay properly trips and blocks closing of all devices within the zone of protection.
- Verify CT secondary has proper grounding.
- Use primary current injection to verify secondary CT to relay wiring.
- Verify CT polarity also matches the drawings and relay settings.
- Other checks:
 - Compare as-left Settings to as-received settings and report any differences to Engineering
 - Review the schematics and settings to ensure all outputs that are used are properly programmed.
 - Ensure all windings being used in differential protection are enabled.

Load Checks During Commissioning

- Load checks will help identify errors such as a mismatch between wiring and the relay settings.
- It is very important to ensure that system conditions will provide sufficient load current on the day of commissioning.
- Each of the following should be evaluated with the relay's measured values when applicable:
 - Phasor currents Closely balanced and near 120 degree between phases
 - Power factor Acceptable level
 - Differential current A near zero operate current should be observed, < I_{op}
- All relay current inputs being used need to be load checked.

Examples of Load Checking Typical Schemes

- The whitepaper provides detailed discussion of loading checking the following typical schemes:
 - Low Impedance Bus Differential Example
 - High Impedance Bus Differential Example
 - Transformer Differential Example
 - Generator Differential Example

Rich Bauer

Associate Principal Engineer RAPA/Event Analysis North American Electric Reliability Corporation

MRO PRS Webinar on Protection System Commissioning

Rich Bauer NERC RAPA/Event Analysis July 14, 2022

RELIABILITY | ACCOUNTABILITY

RELIABILITY | ACCOUNTABILITY

RELIABILITY | ACCOUNTABILITY

Jake Bernhagen, PE

Senior Systems Protection Engineer Reliability Analysis Midwest Reliability Organization

MRO Misoperations and Commissioning

By Jake Bernhagen, P.E. – Senior Systems Protection Engineer

CLARITY ASSURANCE RESULTS

ERO Misoperations by Year

■ 2017 ■ 2018 ■ 2019 ■ 2020 ■ 2021

ERO Operations by Year

61

MRO Misoperation Rate by Year

MRO Misoperations by Equipment Type

MRO Misoperations by Cause

MRO Human Error Misoperations

 \bigcirc

- Between 2017 & 2021, 41.6% of MRO misoperations were Human Error related As-Left Personnel Error, Design Errors, Incorrect Settings, Logic Errors)
- 64.7% of HE are associated with transmission line misoperations

Overall, Incorrect Settings account for

- 24.8% of all misoperations
- 59.7% of all HE misoperations

MRO Microprocessor Misoperations

- Between 2017 & 2021, 85.2% of HE misoperations are associated with microprocessor relays
- Of those misoperations, two-thirds are 0 associated with Incorrect Settings

MRO Performance Improvement Initiatives

- Protective Relay Subgroup (PRS)
- White Papers
- Misoperation Peer Review Team

MRO Protective Relay Subgroup (PRS)

The purpose of the MRO Protective Relay Subgroup (MRO PRS) is to identify, review and discuss system protection and control issues relevant to the reliability of the bulk electric system and to develop and implement regional procedures for the NERC PRC standards.

- Reports to MRO's Reliability Advisory Council (RAC)
- Consists of relay subject matter experts from companies in the MRO footprint
- Meets quarterly
- Reviews NERC Lessons Learned related to protection system components
- Periodic presentations on events that occur in MRO's region
- Periodic technical presentations by members

MRO Protective Relay Subgroup (PRS) Membership

Member	Company	Member	Company
Greg Sessler, Chair	American Transmission	Derek Vonada	Sunflower Electric Power
	Company		Corporation
David Wheeler,	Southwestern Public	Derrick Schlangen	Great River Energy
Vice Chair	Services Co.		
Adam Daters	ITC Holdings	Glenn Bryson	American Electric Power
Alex Bosgoed	Saskatchewan Power	Greg Hill	Nebraska Public Power
	Corporation		District
Casey Malskeit	Omaha Public Power District	Jeff Beasley	Grand River Dam
		S	Authority
Cody Remboldt	Montana-Dakota Utilities	Josh Erdmann	Xcel Energy
David Weir	Western Area Power	Matt Boersema	Western Farmers Electric
	Administration		
Dennis Lu	Manitoba Hydro	Ryan Einer	Oklahoma Gas & Electric

White Papers

The MRO PRS has published two white papers:

- 2016 paper covers overcurrent relaying, Direction Comparison Blocking (DCB) schemes, & Direct Transfer Trip (DTT) schemes
- 2017 paper covers breaker failure relaying, differential relay application, & <u>commissioning practices</u>

Misoperation Peer Review Team

Misoperations are reviewed to ensure correct and consistent reporting

- Conducted quarterly by a subgroup of PRS members
- Allows participants to review a variety of misoperations and discuss solutions, findings, best practices, etc.
- Unusual or severe misoperations may be presented on at PRS meetings for technical discussion

What Entities Can do to Reduce Misoperations

- Participate in and be involved with the Protective Relay Subgroup
- Company relay subject matter experts should assist in PRS relay misoperation reviews
- Reach out to the MRO PRS for misoperation assistance & advice
- Peer review relay settings and commissioning testing procedures

Protective Relay Subgroup (PRS)

MRO Protective Relay Subgroup

- <u>https://www.mro.net/organizational-groups/reliability-advisory-council/protective-relay-subgroup/</u>
- MRO Protective Relay Subgroup Q3 Meeting, Tuesday, August 16, 2022 8:00 am - 3:00 pm CDT
 - <u>https://www.mro.net/event/mro-protective-relay-subgroup-q3-meeting/</u>
- MRO Protective Relay Subgroup Misoperations Phase II Whitepaper
 - <u>https://www.mro.net/wp-content/uploads/document-library/Protective-Relay-Subcommittee-Misoperations-Phase-II-Whitepaper.docx.pdf</u>

Resources

- Joint Review of Protection System Commissioning Programs
 - <u>https://www.ferc.gov/sites/default/files/2021-</u> <u>11/Protection%20System%20Commissioning%20Program%20Review%20Project.pdf</u>
- IEEE PSRC, WG I-25, Commissioning Testing of Protection Systems, (2017)
 - <u>https://www.pes-psrc.org/kb/published/reports/WG%20I-</u> 25%20Commissioning%20_Testing%20of%20Protection%20Systems%205-10-2017.pdf</u>
- 2022 MRO Regional Risk Assessment
 - <u>https://www.mro.net/wp-content/uploads/document-library/2022-MRO-RRA.pdf</u>

MRO PRS Protection System Commissioning Webinar

For more information, please contact:

Max Desruisseaux, Senior Power Systems Engineer <u>Max.Desruisseaux@mro.net</u>

Jake Bernhagen, Senior Systems Protection Engineer Jake.Bernhagen@mro.net

John Grimm, Principal Systems Protection Engineer John.Grimm@mro.net

Questions